Influence of macrophyte species on microbial density and activity in constructed wetlands.
نویسندگان
چکیده
It is often assumed that planted wastewater treatment systems outperform unplanted ones, mainly because plants stimulate belowground microbial population. Yet, fundamental interactions between plants and associated microorganisms remain only partly understood. The aim of our project was to evaluate microbial density and activity associated to the rhizosphere of three plant species. Experimental set-up, in six replicates, consisted of four 1.8-L microcosms respectively planted in monoculture of Typha angustifolia, Phragmites australis, Phalaris arundinacea and unplanted control. Plants were grown for two months with 25 L m(-2) d(-1) of secondary effluent (in g m(-2) d(-1): 1.3 TSS, 7.5 COD, 1.0 TKN). Sampling of substrate, roots and interstitial water was made according to depth (0-10, 10-20 cm). Biofilm was extracted with 500 mL of a buffer solution. Microbial density was directly estimated by flow cytometry and indirectly by protein measurements. Biological activity was determined using respirometry assays, dehydrogenase and enzymatic activity measurements. Our results show that microbial density and activity are higher in the presence of plants, with significantly higher values associated with Phalaris arundinacea. Greater density of aerobic or facultative bacteria was present in planted microcosm, particularly on root surface, suggesting root oxygen release. Microbes were present on substrate and roots as an attached biofilm and abundance was correlated to root surface throughout depth. Plant species root morphology and development seem to be a key factor influencing microbial-plant interaction.
منابع مشابه
Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection?
While the positive role of macrophytes on removal efficiency in constructed wetlands has been well established, possible differences in performance between plants species of comparable life forms and sizes are much harder to demonstrate. We reviewed 35 experimental studies published in peer-reviewed journals and proceedings on the effect of macrophyte species selection on pollutant removal in S...
متن کاملAn assessment of mosquito breeding and control in four surface flow wetlands in tropical-subtropical Australia.
In Queensland, Australia, the tropical-subtropical climate is ideal to promote macrophyte growth in surface flow wetlands; however, there have been concerns that constructed wetlands are potential breeding sites for disease-bearing mosquitoes. The aim of this study was to assess whether mosquitoes were breeding in these constructed wetlands, and if so, where they breed, and what parameters migh...
متن کاملAnammox enrichment and constructed wetland inoculation for improvement of wastewater treatment performance
This study contributes to the improvement of low-cost biotechnology for wastewater treatment in constructed wetlands (CWs). Constructed wetlands are energy efficient engineered systems that mimic the treatment processes of natural wetlands, removing polluting organic matter, nutrients, and pathogens from water. The aim of this study was to investigate the advisability of the inoculation of hori...
متن کاملThe role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia
Water reclamation and reuse is being actively promoted in Australia. In Queensland, surface-flow constructed wetlands with a diversity of macrophyte types offer the greatest potential for effluent polishing. Constructed wetlands in subtropical climates in coastal regions and arid climates in inland western regions are conducive to high macrophyte growth rates and nutrient removal, in particular...
متن کاملComparison of aquatic macrophyte community structure between natural wetlands and rice fields with different cultivation ages.
Recent studies indicate that rice fields contribute to the conservation of aquatic plants, however, repeated cultivation can reduce the species diversity harbored by rice fields. Repeated tillage, agrochemical application and environmental homogeneity can reduce plant diversity and select for species more tolerant to disturbance. Our hypotheses were: 1) macrophyte richness and biomass decrease ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water science and technology : a journal of the International Association on Water Pollution Research
دوره 56 3 شماره
صفحات -
تاریخ انتشار 2007